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ABSTRACT: The photocatalytic formation of a non-heme
oxoiron(IV) complex, [(N4Py)FeIV(O)]2þ [N4Py =N,N-
bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine], efficiently
proceeds via electron transfer from the excited state of a
ruthenium complex, [RuII(bpy)3]

2þ* (bpy = 2,20-bipyridine)
to [CoIII(NH3)5Cl]

2þ and stepwise electron-transfer oxidation
of [(N4Py)FeII]2þ with 2 equiv of [RuIII(bpy)3]

3þ and H2O
as an oxygen source. The oxoiron(IV) complex was indepen-
dently generatedbyboth chemical oxidationof [(N4Py)FeII]2þ

with [RuIII(bpy)3]
3þ and electrochemical oxidation of

[(N4Py)FeII]2þ.

Heme-containing enzymes, such as cytochromes P450, per-
oxidases, and catalases, catalyze a number of important

metabolic oxidation reactions by reductive activation of O2 using
two electrons and two protons and by production of oxoiron(IV)
porphyrin π-cation radicals as the ultimate oxidant in these enzy-
matic systems.1,2 Non-heme oxoiron(IV) intermediates have also
been identified as active oxidizing species in the catalytic cycles of
Escherichia coli taurine:R-ketoglutarate dioxygenase (TauD), prolyl-
4-hydroxylase, and halogenase CytC3.3 Synthetic model compounds
of such high-valent oxoiron(IV) intermediates have beenproduced in
the reactions of heme and non-heme iron complexes with artificial
oxidants such as iodosylbenzene (PhIO), m-chloroperoxybenzoic
acid (m-CPBA), andhydroperoxides (H2O2 andROOH) orwithO2

in the presence of electron and proton donors.4-6 Alternatively, high-
valent oxometal intermediates have been produced by two-electron
oxidationof themetal complexeswithwater as anoxygen source.7,8 In
the latter case, a strong one-electron oxidant [e.g., cerium(IV)
ammonium nitrate] was required for the generation of high-valent
oxoiron(IV) intermediates.8 In addition, the light-driven reaction has
enabled the use of much weaker oxidants to produce high-valent
oxometal porphyrins;9,10 however, to date there has been no report
on the photocatalytic generation of non-heme oxoiron(IV) com-
plexes with water as an oxygen source.

We report herein the efficient photocatalytic generation of a non-
heme oxoiron(IV) complex, [(N4Py)FeIV(O)]2þ (1) [N4Py =N,
N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine],11 from the
corresponding iron(II) complex, [(N4Py)FeII]2þ (2), using [RuII-
(bpy)3]

2þ (bpy = 2,20-bipyridine) as a photosensitizer, [CoIII-
(NH3)5Cl]

2þ as a relatively cheap and weak one-electron oxidant,
and water as an oxygen source (Scheme 1).

Visible-light irradiation (λ = 450 nm) of the absorption band
of [RuII(bpy)3]

2þ (2.0 � 10-4 M) in a deaerated acetate buffer

(pH 5.0, 50 mM) and acetonitrile (MeCN) [3:1 (v/v)] mixed
solution (2.0 mL) containing 2 (5.0 � 10-4 M) and [CoIII-
(NH3)5Cl]

2þ (2.0 � 10-3 M) resulted in the formation of 1, as
shown in Figure 1. No photocatalytic generation of 1 occurred in
the absence of [RuII(bpy)3]

2þ. The yield of 1 was determined
to be ∼80% from the absorption at λ = 690 nm due to 1 (ε =
400M-1 cm-1).11 Further addition of 2 to the resulting solution
followed by visible-light irradiation resulted in the additional
formation of 1, which was confirmed to take place repeatedly. No
degradation of [RuII(bpy)3]

2þ or [(N4Py)FeII]2þ was observed
after irradiation with visible light at λ = 450 nm. The spectral
changes shown in Figure 1 were mainly due to the conversion of
2 to 1, whereas the absorption band due to [RuII(bpy)3]

2þ

remained virtually the same after photoirradiation.
It is worth noting that in the absence of 2, [RuII(bpy)3]

2þ was
oxidized by [CoIII(NH3)5Cl]

2þ to [RuIII(bpy)3]
3þ through elec-

tron transfer from the excited state of [RuII(bpy)3]
2þ (i.e., [RuII-

(bpy)3]
2þ*, where * denotes the excited state) to [CoIII(NH3)5Cl]

2þ

Scheme 1

Figure 1. Spectral changes observed upon photoirradiation (λ = 450 nm)
of a deaerated acetate buffer (pH5.0, 50mM) andMeCN[3:1 (v/v)]mixed
solution (2.0 mL) containing [RuII(bpy)3]

2þ (2.0 � 10-4 M), [CoIII-
(NH3)5Cl]

2þ (2.0 � 10-3 M), and 2 (5.0 � 10-4 M) at 298 K.
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under 450 nm photoirradiation of the absorption band of [RuII-
(bpy)3]

2þ in a 3:1 (v/v) solvent mixture of acetate buffer (pH 3.7,
50 mM) andMeCN under an Ar atmosphere [see Figure S1 in
the Supporting Information (SI)]. The quenching constant of
[RuII(bpy)3]

2þ* by [CoIII(NH3)5Cl]
2þ was determined to be

140 M-1 (Figure S2).10,12 In addition, the quantum yields
(Φ) of the photocatalytic generation of [RuIII(bpy)3]

3þ with
[CoIII(NH3)5Cl]

2þ were determined using a ferrioxalate
actinometer under irradiation with monochromatic light at
λ = 450 nm (see the experimental section in the SI). The Φ
value increased with increasing [CoIII(NH3)5Cl]

2þ concen-
tration to reach a constant value close to 80% (Figure S3).

1was independently generated by the electrochemical oxidationof
[(N4Py)FeII]2þ in a 3:1 (v/v) solvent mixture of deaerated acetate
buffer (pH 4.7, 50 mM) and MeCN. The cyclic voltammograms
of 2 in a mixed solution exhibited two reversible redox waves at
0.4 and 0.8 V (vs SCE) that are assignable to the redox couples
of [(N4Py)FeII(OH2)]

2þ (2-OH2) and [(N4Py)FeIII(OH)]2þ

(3-OH), respectively (Figure S4). During the first oxidation, the
absorption band at λ = 450 nm due to 2 decreased as the applied
potential was increased (Figure S5). 1 was then gradually formed
under the applied potential at 1.2 V.13 These results on the
electrochemical oxidation indicate that the oxidation potential
of [RuIII(bpy)3]

3þ (Eox = 1.18Vvs SCE)14 is high enough to oxidize
2-OH2 to 1.

Therefore, we carried out the chemical oxidation of 2-OH2

by [RuIII(bpy)3]
3þ in a 3:1 (v/v) solvent mixture of deaerated ace-

tate buffer (pH 2.6, 50mM) andMeCN to confirm the formation of
1 via the reaction of iron(II) complexes with [RuIII(bpy)3]

3þ. First,
the formation of 1 was found to depend on the amount of [RuIII-
(bpy)3]

3þ added to the solution of 2-OH2; we observed a stepwise
UV-vis spectral change in response to the concentration ratio
[RuIII(bpy)3]

3þ/2-OH2 = 0-1 (red and green lines) and 1-2
(green and blue lines), as shown in Figure 2. For example, when the
changes in the absorbance at λ = 378 nm due to 2-OH2, at λ = 550
nm due to [RuII(bpy)3]

2þ, and at λ = 690 nm due to 1were plotted
against [RuIII(bpy)3]

3þ/2-OH2, the formation of 1 (λ = 690 nm)
was observed at [RuIII(bpy)3]

3þ concentrations above the 1:1 ratio
of [RuIII(bpy)3]

3þ to2-OH2(i.e., for [Ru
III(bpy)3]

3þ/2-OH2>1
in Figure 2c). Such stepwise spectral changes are ascribed to the
stepwise oxidation of 2-OH2 to 1 via 3-OHwith 1 and 2 equiv of

[RuIII(bpy)3]
3þ (Scheme2). Finally, we confirmed that the source of

oxygen in 1 is H2O by performing experiments using isotopically
labeled water (H2

18O) (Figure 3).8,15,16

The stepwise electron-transfer oxidation of 2-OH2 to 1 was
further confirmedbyEPRmeasurements of reaction solutions.Upon
addition of 1 equiv of [RuIII(bpy)3]

3þ, 2-OH2 was oxidized to
3-OH, which exhibited EPR signals at g = 7.3, 5.4, and 4.1 due to
high-spin FeIII species (S= 5/2) together with those at 2.25, 2.10, and
1.93 due to low-spin FeIII species (S = 1/2) (Figure 4a).

17 Further
addition of 1 equiv of [RuIII(bpy)3]

3þ resulted in a decrease in the
3-OH signals because of conversion of 3-OH to 1, which is EPR-
silent (S= 1). The EPR signal due to [RuIII(bpy)3]

3þ at g= 2.64 also
disappeared (Figure 4b).18

In conclusion, we have demonstrated that the photocatalytic gene-
ration of a non-heme oxoiron(IV) complex, [(N4Py)FeIV(O)]2þ

(1), proceeds efficiently via electron transfer from [RuII(bpy)3]
2þ*

to [CoIII(NH3)5Cl]
2þ to produce [RuIII(bpy)3]

3þ, followed by
the electron-transfer oxidation of [(N4Py)FeII]2þ using 2 equiv of
[RuIII(bpy)3]

3þ andH2O as an oxygen source. The expansion of the
photocatalytic generation of non-heme oxoiron(IV) complexes to

Figure 2. (a, b) UV-vis spectral changes observed upon addition of
[RuIII(bpy)3]

3þ in the range from (a) 0 M (red line) to 5.0 � 10-4 M
(green line) and (b) 5.0 � 10-4 M (green line) to 1.0 � 10-3 M (blue
line) to a solution of 2-OH2 (5.0 � 10-4 M) in a 3:1 (v/v) solvent
mixture of deaerated acetate buffer (pH 2.6, 50 mM) and MeCN. (c)
Plots of absorbance at λ = 378 (9), 550 (2), and 690 nm (b) vs the
[RuIII(bpy)3]

3þ/2-OH2 ratio. Red, green, and blue points denote data
at the ratios 0, 1, and 2, respectively.

Scheme 2

Figure 3. ESI-MS spectrum of [(N4Py)FeIV(18O)]2þ formed in the reac-
tion of [(N4Py)FeII(CH3CN)](ClO4)2 (1.0 � 10-3 M) and [RuIII-
(bpy)3](ClO4)3 (3.0 � 10-3 M) in a 3:1 (v/v) solvent mixture of H2

18O
(pH2.6, 50mM) andMeCNat 298K. Peaks atm/z 220.7, 540.0, 285.2, and
669.0 correspond to [(N4Py)FeIV(18O)]2þ (calcd m/z 220.6), [(N4Py)-
FeIV(18O)(ClO4)]

þ (calcdm/z 540.1), [RuII(bpy)3]
2þ (calcdm/z 285.1),

and [RuII(bpy)3(ClO4)]
þ (calcdm/z 669.1), respectively. The insets show

the observed isotope distribution patterns for (left) [(N4Py)FeIV(18O)]2þ

and (right) [(N4Py)FeIV(18O)(ClO4)]
þ.

Figure 4. (a) EPR spectrum of 3-OH produced by the addition of
1 equiv of [RuIII(bpy)3]

3þ (2.0 mM) to 2-OH2 (2.0 mM) in a 1:1
(v/v) solvent mixture of deaerated acetate buffer (pH 2.6, 50 mM)
and MeCN at 77 K. (b) EPR spectrum of [RuIII(bpy)3]

3þ (2.0 mM)
in MeCN at 77 K.
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photocatalytic oxygenationof substrates bynon-heme iron catalysts is
underway in our laboratories.19
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